martes, 24 de noviembre de 2009

PARTES DE UNA UNIDAD DE CD

DISCO COMPACTO

HISTORIA

El disco compacto fue creado por el holandés Kees Immink, de Philips, y el japonés Toshitada Doi, de Sony, en 1979.[2] Al año siguiente, Sony y Philips, que habían desarrollado el sistema de audio digital Compact Disc, comenzaron a distribuir discos compactos, pero las ventas no tuvieron éxito por la depresión económica de aquella época. Entonces decidieron abarcar el mercado de la música clásica, de mayor calidad. Comenzaba el lanzamiento del nuevo y revolucionario formato de grabación audio que posteriormente se extendería a otros sectores de la grabación de datos.

El sistema óptico fue desarrollado por Philips mientras que la Lectura y Codificación Digital corrió a cargo de Sony, fue presentado en junio de 1980 a la industria y se adhirieron al nuevo producto 40 compañías de todo el mundo mediante la obtención de las licencias correspondientes para la producción de reproductores y discos[3] .

En 1981, el director de orquesta Herbert von Karajan convencido del valor de los discos compactos, los promovió durante el festival de Salzburgo y desde ese momento empezó su éxito. Los primeros títulos grabados en discos compactos en Europa fueron la Sinfonía alpina de Richard Strauss, los valses de Frédéric Chopin interpretados por el pianista chileno Claudio Arrau y el álbum The Visitors de ABBA, en 1983 se produciría el primer disco compacto en los Estados Unidos por CBS (Hoy Sony Music) siendo el primer título en el mercado un álbum de Billy Joel la producción de discos compactos se centralizo por varios años en los Estados Unidos y Alemania de donde eran distribuidos a todo el Mundo, ya entrada la década de los noventas se instalaron fabricas en diversos países como ejemplo en 1992 Sonopress produjo en México el primer CD de Título "De Mil Colores" de Daniela Romo.

En el año 1984 salieron al mundo de la informática, permitiendo almacenar hasta 700 MB. El diámetro de la perforación central de los discos compactos fue determinado en 15 mm, cuando entre comidas, los creadores se inspiraron en el diámetro de la moneda de 10 centavos de florín de Holanda. En cambio, el diámetro de los discos compactos es de 12 cm, lo que corresponde a la anchura de los bolsillos superiores de las camisas para hombres, porque según la filosofía de Sony, todo debía caber allí.

DEFINICION

El disco compacto (conocido popularmente como CD, por las siglas en inglés de Compact Disc) es un soporte digital óptico utilizado para almacenar cualquier tipo de información (audio, imágenes, video, documentos y otros datos). En español o castellano, se puede escribir «cedé», aunque en gran parte de Latinoamérica se pronuncia «sidí» (en inglés). La Real Academia Española (R.A.E.) también acepta «cederrón»[1] (CD-ROM). Hoy en día, sigue siendo el medio físico preferido para la distribución de audio.

Los CD estándar tienen un diámetro de 12 centímetros y pueden almacenar hasta 80 minutos de audio (ó 700 MB de datos). Los MiniCD tienen 8 cm y son usados para la distribución de sencillos y de controladores guardando hasta 24 minutos de audio o 214 MB de datos.

Esta tecnología fue más tarde expandida y adaptada para el almacenamiento de datos (CD-ROM), de video (VCD y SVCD), la grabación doméstica (CD-R y CD-RW) y el almacenamiento de datos mixtos (CD-i, Photo CD y CD EXTRA.

El disco compacto sigue gozando de popularidad en el mundo actual. Para el año 2007, se han vendido 200 millones de CD en el mundo

MOTOR DEL PLATO

La parte del plato giradiscos en la que el disco da vueltas es la que se conoce como rotor. No obstante, el rotor no es la única parte del plato giradiscos, pues éste también engloba al motor encargado de proporcionarle la energía al rotor. La velocidad con que el motor haga girar al rotor ha de ser ajustada, para permitir el rozamiento preciso de la aguja con el surco del disco. Si esta velocidad no se corresponde el sonido no será correctamente reproducido.

BOBINA DE ENFOQUE

El conjunto formado por las bobinas de Foco y Tracking y la lente de enfoque los encontramos en la parte superior del Pick-up tapados por una cubierta plástica que los protege de la suciedad y el contacto del usuario .
Ambas bobinas cumplen un papel fundamental en el funcionamiento del sistema .
La bobina de Foco es la encargada de mover la lente en forma ascendente - descendente tratando de optimizar en todo momento el enfoque del haz sobre el surco hipotético . Su razón de existir dentro del pick-up se debe a las deficiencias que pueden provocarse en la manufacturación de los CD , los cuales a pesar de ser construídos bajo rigurosas normas de calidad , nunca son perfectos , ni tampoco , hay dos que sean exactamente iguales .
Aparte de esto , el manipuleo diario de los CD , los cambios de temperatura y otros factores diversos pueden afectar a los CD provocando torceduras , rayones , etc.
Otro factor a tener en cuenta es la perfecta carga que debiera tener el CD en el sistema . Por más que se perfeccione mecánicamente el plato del motor de giro del CD ( Spindle o CLV ) siempre existirán variaciones de altura respecto a la lente en toda una vuelta del CD .
Todo lo expuesto hasta aquí podemos decir , que es lo mismo para la bobina de Tracking , con la diferencia que esta brindará a la lente un movimiento hacia los laterales a partir de su punto de descanso .
La función de esta bobina es , una vez detectado el surco hipotético , hacer un seguimiento exacto del mismo y corregir los posibles errores de exentricidad que pudiera tener el CD .

Constructivamente vemos que poseen una estructura rectangular a cuyos lados se encuentran los imanes .
Todo esto viene soportado , en muchos casos , por una estructura plástica muy sensible a los movimientos para los cuales está diseñado el conjunto.
Otros son soportados por finos alambres que en definitivamente son los que llevan las conexiones a las bobinas .
Independientemente del método utilizado , el la finalidad es la de soportar y movilizar la lente de enfoque .

Cuidado : Debemos tratar con mucho cuidado todo este conjunto , al momento de realizar una limpieza en la lente y en el espejo reflector , ya que su posición y nivelación traen un ajuste de fábrica , y su variación puede provocar la desalineación del sistema óptico inutilizándolo.

lunes, 23 de noviembre de 2009

CARACTERISTICAS MEMORIA RAM

CARACTERISTICA

DEFINICION

Localización

Interna (se encuentra en la placa base).

Capacidad:

Hoy en día no es raro encontrar ordenadores PC equipados con 64, 128 ó 256 Mb de memoria RAM.

Método de acceso

La RAM es una memoria de acceso aleatorio. Esto significa que una palabra o byte se puede encontrar de forma directa, sin tener en cuenta los bytes almacenados antes o después de dicha palabra (al contrario que las memorias en cinta, que requieren de un acceso secuencial). Además, la RAM permite el acceso para lectura y escritura de información.

Velocidad de acceso

Actualmente se pueden encontrar sistemas de memoria RAM capaces de realizar transferencias a frecuencias del orden de los Gbps (gigabits por segundo). También es importante anotar que la RAM es una memoria volátil, es decir, requiere de alimentación eléctrica para mantener la información. En otras palabras, la RAM pierde toda la información al desconectar el ordenador.

Hemos de tener muy en cuenta que esta memoria es la que mantiene los programas funcionando y abiertos, por lo que al ser Windows 95/98/Me/2000 un sistema operativo multitarea, estaremos a merced de la cantidad de memoria RAM que tengamos dispuesta en el ordenador. En la actualidad hemos de disponer de la mayor cantidad posible de ésta, ya que estamos supeditados al funcionamiento más rápido o más lento de nuestras aplicaciones diarias. La memoria RAM hace unos años era muy cara, pero hoy en día su precio ha bajado considerablemente.

Cuando alguien se pregunta cuánta memoria RAM necesitará debe sopesar con qué programas va a trabajar normalmente. Si únicamente vamos a trabajar con aplicaciones de texto, hojas de cálculo y similares nos bastará con unos 32 Mb de ésta (aunque esta cifra se ha quedado bastante corta), pero si trabajamos con multimedia, fotografía, vídeo o CAD, por poner un ejemplo, hemos de contar con la máxima cantidad de memoria RAM en nuestro equipo (128-256 Mb o más) para que su funcionamiento sea óptimo, ya que estos programas son auténticos devoradores de memoria. Hoy en día no es recomendable tener menos de 64 Mb, para el buen funcionamiento tanto de Windows como de las aplicaciones normales, ya que notaremos considerablemente su rapidez y rendimiento, pues generalmente los equipos actuales ya traen 128 Mb o 256 Mb de RAM.

La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.

El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.

Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.

En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.

Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.

Esta unidad sirve para leer los discos compactos (CD-ROM) en los que vienen casi todos los programas y para escuchar CD de música en el PC. La velocidad de una unidad de CD ROM depende dos factores: la tasa de transferencia de datos (lo más importante y el único dato que le mencionarán) y el tiempo de acceso.

La tasa de transferencia de datos se refiere a la cantidad de datos que la unidad de CD ROM puede enviar al PC, en un segundo. Esa tasa se mide en kilobytes por segundo (kbps) y se indica con un número al lado de un X, por ejemplo : 16X, 24X, 48X..(a más X, mayor velocidad). Así pues una unidad de 24X puede enviar al computador 3.6000 kb de datos en un segundo y una unidad de 48X, puede transferir 7.200 kbps, el doble de una 24X.

VENTAJAS Y DESVENTAJAS ENTRE PROCESADORES AMD E INTEL

Vamos a ver lo que realmente interesa, que son los micro que existen hoy día y que nos interesa para comprar un PC: Hay que tener claro lo que se busca, y dada la gran cantidad de micros, velocidades, nombres, núcleos que hay, puede llegar a ser muy confuso decantarse por uno, especialmente cuando no está claramente especificado en la tienda donde lo compremos.

La CPU (Central processing unit). o unidad central de proceso, es la encargada de realizar las tareas que le enviamos a través de los periféricos de entrada como teclado, ratón o los programas. Básicamente existen dos fabricantes de microprocesadores para el ordenador. Por un lado está Intel, y su gama Pentium, y por otro, los AMD y sus Athlon. También existen otros fabricantes como IBM con los PowerPC y otros mucho menos conocidos. Nos vamos a centrar en los dos más conocidos: Intel y AMD

La velocidad de la ejecución de las tareas, de los juegos, el tiempo de carga y ejecución de programas... todo depende de la CPU, pero no exclusivamente. Aunque tengamos la mejor CPU del mercado, no nos garantiza tener el ordenador más rápido. Esto hay que tenerlo muy claro.

La velocidad de la CPU es lo que determina el rendimiento del chip. Recordad que e mide en megahertzios (MHz) o gigahertzios (GHz), y que 1 GHz = 1.000 MHz. También es muy importante el núcleo, algo así como el nombre interno del procesador. Por ejemplo, actualmente, el Pentium4 acumula alrededor de 5 nombres internos, que son Willamete, Northwood, Prescott, Cedar Mill y Preslet. Se diferencian, por ejemplo, en tamaño de los transistores (a menor tamaño, menos calor y más velocidad), tamaño de la memoria caché interna o si son de uno solo o doble core (doble core son "dos micros" en el mismo espacio físico, con lo cual su rendimiento es mucho mayor que uno solo). Con AMD ocurre lo mismo, en el Athlon64 nos encontramos actualmente nombres como Palermo, Venice, Manchester, San Diego, Toledo, Orleans, Windsor... y otros que han desaparecido, como Winchester o Newcastle. Es evidente que tenemos que mencionar los núcleos para que no nos den gato por libre.

Intel

Intel: la marca que más vende y la más conocida gracias a sus procesadores Pentium. Tienen dos posibles sockets: 478 y 775. El primero de ellos está pasado de moda y desapareciendo, así que nos centraremos en el segundo. Actualmente distribuye, dentro del nuevo socket 775, los siguientes modelos:

Intel Celeron D, la gama baja y con un rendimiento muchísimo peor de lo que se espera de los GHz que tienen, pues tienen muy poca memoria caché para poder ser tan baratos. Además, son sólo de 32 bits. Actualmente de 2533 a 3333 GHz. Hay de dos tipos, núcleo Prescott con 256 Kb de caché y núcleo Cedar Mill, con 512 Kb. Los segundos son mejores.

Intel Pentium 4, la gama media. Actualmente todos poseen extensiones EMT 64, por lo que son micros de 64 bits. Es importante que te des cuenta que ya no indican el nº de GHz, sino un modelo. Por tanto, es muy importante que averigües la velocidad real del micro. Existen dos cores:

Prescott: de 531 / 30 GHz hasta 541 / 32 GHz, con 1024 kB de caché

Cedar Mill: de 631 / 30 GHz hasta 661 / 36 GHz, con 2048 kB de caché. Es evidente que los segundos son mejores, los que empiezan por "600".

Intel Pentium D, la gama alta. Similares a los anteriores pero de doble core. Es decir, que es como si estuvieras comprando dos micros y los colocaras en el mismo espacio, duplicando (idealmente) el rendimiento. Sólo se aprovechan al 100% si el software está optimizado, pero son muy recomendables dada la facilidad con que permiten trabajar con varios programas a la vez. Fíjate bien en los precios porque hay Pentium D por el mismo dinero que un Pentium 4 de los mismos GHz (de 32 a 36 GHz) por lo que estarías comprando el doble por el mismo dinero. También son micros de 64 bits. Existen dos cores:

Smithfield: 805 y 2666 GHz. Sólo 1024 Kb de caché por core. Muy malos, dado que tienen sólo 533 MHz de bus.

Presler, de 915 / 28 GHz hasta 960 / 36 GHz. 2048 kB de caché por core y 800 MHz de bus. Uno de estos es buena compra, así que asegúrate que empiece por "900".

Intel Core 2 Duo, la gama más alta. También de doble core y 64 bits, pero emplean una arquitectura nueva (arquitectura core), que es la base para los futuros micros de 4 y 8 cores en adelante. Aunque van a una velocidad de GHz menor, su rendimiento es muchísimo más alto que los anteriores, por lo que son mucho más rápidos que los Pentium D. Existen dos cores:

Allendale, E6300 / 1866 GHz y E6400 / 2133 GHZ, con 1024 kB de caché por core y 1066 MHz de bus. Son buena compra, pero no son los mejores Core 2 Duo.

Conroe: E6600 / 24 GHz y E6700 / 26 GHz, con 2048 kB de caché por core y 1066 MHz. Los más recomendables si el prespuesto te lo pemite.

Conroe XE: X6800EE / 293 GHz, con 2048 kB de caché por core y 1066 MHz. La versión más extrema de Intel. Actualmente el micro más rápido de Intel para ordenadores de sobremesa (no servidores ni portátiles). Es caro (más de 1.000 euros) y su rendimiento no es mucho mayor que el E6700 que cuesta la mitad. Que cada uno valore si le merece la pena.

La elección del microprocesador depende del uso que se le vaya a dar. Si sólo vamos a usarlo para aplicaciones de ofimática (procesador de textos, hojas de cálculo y programas relativamente sencillos y con poco uso de memoria) los Celeron nos valdrán, ya que el uso de memoria es bastante reducido. Pero ojo, que son de 32 bits, algo que, si bien hoy día no está desaprovechado por la falta de software optimizado a 64 bits, está muy anticuado.

Sin embargo, un ordenador como regalo para una familia, sobretodo para los hijos que aunque digan que no, van a jugar, los Celeron se quedan bajos. Son necesarios micros más potentes, es decir, los Pentium 4. Especialmente sabiendo que el nuevo sistema operativo de Microsoft, el Windows Vista, está a la vuelta de la esquina, y que requerirá un ordenador potente para moverlo.

AMD

AMD: es el rival más directo que tiene Intel. Los micros son exactamente igual de compatibles, y usando el ordenador no notaremos en ningún momento diferencias entre tener un Intel o un AMD.

Al igual que ocurre con Intel, AMD también fabrica diferentes gamas de microprocesadores: los Sempron, al nivel que los Celeron son los de peor calidad, pero que sin embargo si el uso del ordenador es básico (como ya dijimos antes, ofimática, navegar por internet y poco más) un Sempron nos ayudará a ésta tarea a la perfección. Sino, podemos ascender de calidad y comprar los otros modelos superiores, los Athlon64 (con 64 bits, como dice el nombre) o los Athlon 64 X2, que son los de doble core de AMD.

Algo importante en AMD es su denominación de velocidad teórica, marcada con un XXXX+ que no representa su velocidad en GHz. Por ejemplo, un Athlon64 3200+ con 512 kB de caché, va realmente a 2 GHz. Eso no implica que sean lentos, todo lo contrario, se supone que ese 2 GHz equivale a un Pentium4 a 3,2 GHz (de ahí el 3200+). Normalmente suele ser un poco pretencioso, y equivale realmente a un Pentium 4 28 ó 3 GHz. Por ello el valor acabado en el sigmo + sirve para comparar los Athlon entre sí, pero no demasiado válido para compararlos con los Pentium 4.

Hoy día existen hasta cuatro sockets de AMD. Los dos más antiguos, el socket A/462 y el socket 754, y hoy día no son nada recomendables, No por que no hayan tenido sus buenos tiempos con micros rápidos, sino porque hoy día venden micros muy lentos para ellos, así que los descartamos. Así que nos quedamos con el socket 939 y el nuevo socket AM2. La diferencia está en que el primero emplea memoria ram DDR y el segundo DDR2, como la de los Pentium4. Los socket 939 son más antiguos, pero hoy día están totalmente vigentes, igualan en rendimiento a los AM2, y además son el algunos casos (concretamente los modelos más rápidos) mucho más baratos. Intentaremos centrarnos en ambos. Recuerda que los Sempron64, Athlon64 y Athlon 64 X2, como dice el nombre, son todos de 64 bits.

Athlon Sempron64 con socket AM2. La alternativa teóricamente más económica, muy poco recomendable, con sólo 128 y 256 kB de caché y velocidades de 2800+ hasta 3600+. Son igual de caros que los Athlon64 Socket 939 Venice del siguiente apartado y mucho peores, por lo que comprarlos es tirar el dinero.

Athlon 64 con Socket 939: aquí tenemos hasta 4 cores:

Venice y Manchester. En este caso recomendamos los primeros, que son algo más baratos y similares en rendimiento que los segundos. Dentro de los Venice tenemos desde 3000+ hasta 3800+. Los Manchester son el modelo doble core pero con uno de ellos desactivado. Al igual que los Venice, tienen 512 kB de caché.

Existen otras dos variantes con núcleos San Diego y Toledo, ambos 3700+ y con 1024 kB de caché. Son los mejores Athlon 64 de socket 939 con diferencia, pues tienen más memoria caché, por lo que son los mejores athlon64 939.

Athlon 64 con Socket AM2. En este caso tenemos sólo un núcleo, Orleans, con velocidades entre 3200+ y 3800+, con 512 kB de caché. No existen diferencias importantes frente al Venice del Socket 939, salvo la intrínseca al socket (como ya hemos comentado, memoria RAM DDR para el 939, DDR2 para el AM2).

Athlon 64 X2 con Socket 939. Al igual que en los Intel, también tenemos esta opción con doble core de AMD, es decir, dos micros en en el mismo espacio. Tenemos dos núcleos:

Manchester, con velocidades de 3800+ hasta 4600+. Con 512 kB de caché por core. No son malos, pero tampoco los mejores.

Toledo, con velocidades de 4400+ hasta 4800+. Con 1024 kB. Son los mejores doble core para socket 939.

Athlon 64 X2 con Socket AM2. Tenemos un núcleo, Windsor, con velocidades desde 3600+ hasta 5200+, Ojo que tienen cachés de distintas velocidades, entre 256 y 1025 kB. Por ejemplo, el 4200+ a 2,2 GHz y 512 kB, el 4400+ a 2,4 GHz y 1024 kB. Ambos van a la misma velocidad real y, sólo por el aumento de caché, la velocidad "teórica" es mayor. Lo mismo pasa con los dos modelos más exclusivos, el 5000+ a 2,6 GHz con 512 kB y el 5200+ a 2,6 GHz con 1024 kB.

Athlon 64 FX-62 con Socket AM2. Es el más alto de gama de AMD, doble core, 28 GHz de velocidad y 1024 kB de caché por core. Es muy caro (más de 800 euros) y no va mucho más rápido que un Athlon 64 X2 5200+ que cuesta la mitad. Una de sus ventajas es que tiene desbloqueado el multiplicador y es muy apto para técnicas de overclocking (forzar el micro a que funcione más rápido de su velocidad teórica). Por ello, es recomendable sólo a usuarios expertos que, además, tengan o quieran gastarse tal cifra de dinero en un micro.

Dentro de AMD, la mejor opción relación calidad/precio, hoy por hoy, es el socket 939, ya que, como hemos dicho, son más baratos que los AM2 e igual de rápidos. Además, la memoria DDR que necesitan es más barata que la DDR2.

¿Intel o AMD?

Este es el tema más complicado. Personalmente, nosotros no somos ni de un "bando" ni de otro. Simplemente, cuando actualizamos nuestros PCs, compramos el que sea más rápido en ese momento. Al día de hoy, en prestaciones absolutas se lleva la palma el Core 2 Duo con núcleo Conroe de Intel, con mucha diferencia, incluso comparándolo con el AMD Athlon 64 FX-62. En relación calidad/precio, nos quedamos con un Athlon 64 con socket 939, concretamente el 3700+ con core San Diego o Toledo.

VENTAJAS Y DESVENTAJAS DE LOS MONITORES LCD Y CRT

PANTALLAS LCD


Ventajas

El grosor es inferior por lo que pueden utilizarse en portatiles.
Cada punto se encarga de dejar o no pasar la luz, por lo que no hay moire.
La geometria es siempre perfecta, lo determina el tamaño del pixel


Desventajas

*Solo pueden reproducir fielmente la resolucion nativa, con el resto, se ve un borde negro, o se ve difuminado por no poder repruducir medios pixels.
*Por si solas no producen luz, necesitan una fuente externa.
*Si no se mira dentro del cono de visibilidad adecuado, desvirtuan los colores.
*El ADC y el DAC de un monitor LCD para reproducir colores limita la cantidad de colores representable.
* El ADC (Convertidor Digital a Analogico) en la entrada de video analogica (cantidad de colores a representar).
* El DAC (Convertidor Analogico a Digital) dentro de cada pixel (cantidad de posibles colores representables).
* o en los CRT es la tarjeta grafica la encargada de realizar esto, el monitor no influye en la cantidad de colores representables, salvo en los primeros modelos de monitores que tenian entradas digitales TTL en lugar de entradas analogicas.

PANTALLAS CTR



Ventajas

*Permiten reproducir una mayor variadad cromatica.
*Distintas resoluciones se pueden ajustar al monitor.
*El los monitores de apertura de rejilla no hay moire vertical.

Desventajas

*Ocupan mas espacio, (cuanto mas fondo, mejor geometria).
*Los modelos antiguos tienen la pantalla curva.
*Los campos electricos afectan al monitor (la imagen vibra).
*Para disfrutar de una buena imagen necesitan ajustes por parte del usuario.
*En los monitores de apertura de rejilla se pueden apreciar varias lineas de tension muy finas y dificiles de apreciarque cruzan la pantalla horizontalment e, se pueden apreciar con fondo blanco.

PARTES DE UN MONITOS CRT



Partes Fundamentales de un Monitor CRT :

o Tubo de Rayos Catódicos (CTR).

o Yugo de Deflexión.

o Circuitos de Deflexión y Sincronismo Horizontal.

o Circuitos de Deflexión y Sincronismo Vertical.

o Circuito de Alimentación.

o Filtros de Pantalla.


o Mandos de Brillo y Contraste.


o Mandos de Sincronismo Vertical y Horizontal.

El tubo de la pantalla (CRT), que es en realidad una válvula termoiónica de alto vacío en que un rayo catódico barre la totalidad de la superficie a razón de 30 veces por segundo.

Monitores

El monitor es uno de los principales dispositivos de salida de una computadora por lo cual podemos decir que nos permite visualizar tanto la información introducida por el usuario como la devuelta por un proceso computacional.
La tecnología de estos periféricosha evolucionado mucho desde la aparición de las PC, desde los viejos monitoresde fósforo verde hasta los nuevos de plasma. Pero de manera mucho más lenta que otros componentes, como microprocesadores, etc.

Sus configuraciones han ido evolucionando según las necesidades de los usuarios a partir de la utilización de aplicaciones más sofisticadas como el diseño asistido por computadoras o el aumento del tiempode estancia delante de la pantalla y q se ha arreglado aumentando el tamaño de la pantalla y la calidad de la visión.
Monitores CRT

El monitor esta basado en un elemento CRT (Tubo de rayos catódicos), los actuales monitores, controlados por un microprocesadorpara almacenar muy diferentes formatos, así como corregir las eventuales distorsiones, y con capacidad de presentar hasta 1600x1200 puntos en pantalla. Los monitores CRT emplean tubos cortos, pero con la particularidad de disponer de una pantalla completamente plana.

Monitores color:

Las pantallas de estos monitores están formadas internamente por tres capas de material de fósforo, una por cada color básico (rojo, verde y azul). También consta de tres cañones de electrones, e igual que las capas de fósforo hay una por cada color.
Para formar un color en pantalla que no sea ninguno de los colores básicos, se combina las intensidades de loas haces de electrones de los tres colores básicos.
Monitores monocromáticos:
Muestra por pantalla u solo color: negro sobre blanco o ámbar, o verde sobre negro. Uno de estos monitores con una resolución equivalente a la de un monitor a color, si es de buena calidad, generalmente es más nítido y legible.
Funcionamiento de un monitor CRT
En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luzelectrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagen completa.

Los monitores monocromaticos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.

El refresco de pantalla

El refresco es el número de veces que se dibuja a pantalla por segundo. Evidentemente, cuando mayor sea la cantidad de veces que se refresque, menos se nos cansara la vista y trabajaremos mas cómodos y con menos problemas visuales.

La velocidaddel refresco se mide en hertzios (Hz. 1/segundo), así que 70 Hz significa que la pantalla se dibuja 70 veces por segundo. Para trabajar cómodamente necesitaremos esos 70 Hz. Para trabajar con el mínimo de fatiga visual, 80Hz o mas. El mínimo son 60 Hz; por debajo de esa cifra los ojos sufren demasiado, y unos minutos basta para empezar a sentir escozor o incluso un pequeño dolor de cabeza.

La frecuencia máxima de refresco de un monitor se ve limitada por la resolución de la pantalla. Esta ultima decide el numero de líneas o filas de la mascara de la pantalla y el resultado que se obtiene del numero de las filas de un monitor y de su frecuencia de exploración vertical (barrido o refresco) es la frecuencia de exploración horizontal; esto es el numero de veces por segundo que el haz de electrones debe desplazarse de izquierda a derecha de la pantalla.


Quien proporciona estos refrescos es la tarjeta grafica, pero quien debe presentarlos es el monitor. Si ponemos un refresco de pantalla que el monitor no soporta podríamos dañarlo, por lo que debemos conocer sus capacidades a fondo.
Resolución

Se denomina resolución de pantalla a la cantidad de píxeles que se pueden ubicar en un determinado modo de pantalla. Estos píxeles están a su vez distribuidos entre el total de horizontales y el de vértices. Todos los monitores pueden trabajar con múltiples modos, pero dependiendo del tamaño del monitor, unos nos serán más útiles que otros.
Un monitor cuya resolución máxima sea de 1024x768 píxeles puede representar hasta 768 líneas horizontales de 1024 píxeles cada una, probablemente además de otras resoluciones inferiores como 640x480 u 800x600. Cuanto mayor sea la resolución de un monitor, mejor será la calidad de la imagen de pantalla, y mayor será la calidad del monitor. La resolución debe ser apropiada además al tamaño del monitor; hay que decir también que aunque se disponga de un monitor que trabaje a una resolución de 1024x768 píxeles, si la tarjeta grafica instalada es VGA (640x480) la resolución de nuestro sistema será esta última.

Tipos de monitores por resolución

TTL: Solo se ve texto, generalmente son verdes o ámbar.
CGA: Son de 4 colores máximo o ámbar o verde, son los primeros gráficos con una resolución de 200x400 hasta 400x600.
EGA: Monitores a colores 16 máximo o tonos de gris, con resoluciones de 400x600, 600x800.
VGA: Monitores a colores de 32 bits de color verdadero o en tono de gris, soporta 600x800, 800x1200
SVGA: Conocido como súper VGA q incrementa la resolución y la cantidad de colores de 32 a 64 bits de color verdadero, 600x400 a 1600x1800.
UVGA: No varia mucho del súper VGA, solo incrementa la resolución a 1800x1200.
XGA: Son monitores de alta resolución, especiales para diseño, su capacidad grafica es muy buena. Además la cantidad de color es mayor.

PARTES DE UNA BOARD

SLOT PCI:

El estándar actual. Puede dar hasta 132 Mb/s a 33 MHz, lo que es suficiente casi para todo, excepto quizá para algunas tarjetas de video 3D. Miden unos 8.5cm generalmente son blancas.

SLOT AGP:

O mas bien ranura, ya que se dedica exclusivamente a conectar tarjetas de video 3D, por lo que solo suele haber una; además. Su propia estructura impide que se utilice para todos los propósitos, por lo que se utiliza como una ayuda para el PCI. Según el modo de funcionamiento puede ofrecer 264 Mb/s o incluso 528Mb/s. Mide unos 8 cm y se encuentra bastante separada del borde de la placa.

SLOT ISA:

Son las más veteranas, un legado de los primeros tiempos del PC. Funcionan a unos 8 MHz y ofrecen un máximo de 16Mb/s, suficiente para conectar un modem o una tarjeta de sonido, pero muy poco para una tarjeta de video. Miden unos 14 cm y su color suele ser negro; existe una versión aun más antigua que mide solo 8.5cm.

SLOT AMR - CNR:

Se trata de una ranura de expansión en la placa madre para dispositivos de comunicaciones como módems.

AMR: Se distingue por una ranura muy corta

CNR: Se distingue de la AMR ya que posee una ranura mucho más extensa.

SLOT PCI EXPRESS:

(Anteriormente conocido por las siglas 3GIO, 3rd Generation I/O) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho mas rápido. Este sistema es apoyado principalmente por INTEL.

BIOS:

“Basic Input – Output System”, Sistema Básico De Entrada – Salida. Programa incorporado en un chip de la placa base que se encarga de realizarlas funciones básicas de manejo y configuración del ordenador.

CHIPSET:

El chipset es un conjunto (set) de chips que se encargan de controlar determinadas funciones del ordenador, como la forma en que se interacciona el microprocesador con la memoria caché, o el control de los puertos y slots PCI, ISA, AGP, USB….

BANCOS DE MEMORIA:

Esta formado por uno a varios “chips” que forman la RAM, ésta es una de las dos partes que componen la memoria principal. Los PC actuales contienen una serie de zócalos donde se insertan los denominados módulos SIMM (Single Inline Memory Module), formados estos a su vez por varios “chips”; esta construcción modular permite añadir mas módulos, y por lo tanto mas memoria, cuando resulta necesario de una manera muy sencilla; eso si, respetando unas reglas de colocación en cuanto a su número y tamaño.

SOCKET:

(Zócalo de fuerza de inserción nula). El gran avance que relajó de los manazas aficionados a la ampliación de ordenadores, aunque gracias a un sistema mecánico permite introducir el micro sin necesidad de fuerza alguna.

REGULADOR DE VOLTAJE:

Es un conjunto de dispositivos electrónicos que mantiene y regula el voltaje interno de la placa base para brindar el voltaje necesario a los diferentes dispositivos internos de ella. Por ejemplo:

SLOT PCI - MICROPROCESADOR - MEMORIAS - CHIP`S

IDE:

(DISPOSITIVOS CON ELECTRÒNICA INTEGRADA) Controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advance Technology Attachment Packet Interface) añade además dispositivos como las unidades de CD-ROM.

FDC:

Los conectores FDC son dichos dispositivos que se orientan a la conexión de unidades de 3 ½ o floppy`s en la cual su numero de pines es de 34 a diferencia del IDE que es de 40 pines.

BUS DEL SISTEMA:

Encargado de transmitir datos y energía.

martes, 17 de noviembre de 2009

TARGETAS CONTROLADORAS

Todos los dispositivos periféricos, tanto internos como externos necesitan valerse de algún medio para comunicarse entre ellos y las computadoras. Algunas veces les llaman controladores, interfaces, puertos o adaptadores.

Básicamente un controlador es un traductor entre la CPU y el dispositivo periférico como discos duros, disquete, teclado o monitor. Básicamente los controladores ejecutan las siguientes funciones:

Aíslan el equipo de los programas.

Adecuan las velocidades entre los dispositivos que operan a diferentes velocidades.

Convierten datos de un formato a otro.

La infraestructura de componentes es mucho mejor y diferente, así que uno se imagina que habría grandes problemas de compatibilidad; sin embargo el equipo ha sido domesticado para responder a las solicitudes de la CPU del mismo modo (aunque con mayor rapidez) que el viejo controlador de IBM diseñado por Cebe. Existe la misma situación respecto de los controladores de vídeo diseñados por ATI o Paradise: responden a los mismos programas que los CGA, EGA o VGA originales de IBM, pero son mas baratos y generalmente trabajan con mayor rapidez. Utilizar controladores con interfaces bien definidas hace posible construir equipo compatible.

Video:

Lanzada en 1982, es la primera tarjeta que aparece con posibilidades gráficas. Tiene dos modos de funcionamiento: el modo texto del MDA (pero con una matriz de puntos por signo de 8x16) y un modo gráfico con resolución de 720 x 340. Tampoco podía trabajar con colores.

La memoria de la pantalla se aumenta hasta 64 Kb. La frecuencia de cambio de imagen es de 50 Hz.

Red:

Aunque el término tarjeta de red se suele asociar a una tarjeta de expansión insertada en una ranura interna de un ordenador o impresora, se suele utilizar para referirse también a dispositivos integrados (del inglés embebed) en la placa madre del equipo, como las interfaces presentes en la videoconsola Xbox o los modernos notebooks. Igualmente se usa para expansiones con el mismo fin que en nada recuerdan a la típica tarjeta con chips y conectores soldados, como la interfaz de red para la Sega Dreamcast, las PCMCIA, o las tarjetas con conector y factor de forma CompactFlash y Secure Digital SIO utilizados en PDAs

Wifi:

Wi-Fi (pronunciado en inglés /waɪfaɪ/, aunque en España se pronuncia /wɪfɪ/), siglas en inglés de Wireless Fidelity, es un sistema de envío de datos sobre redes computacionales que utiliza ondas de radio en lugar de cables, además es una marca de la Wi-Fi Alliance (anteriormente la WECA: Wireless Ethernet Compatibility Alliance), la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11.

Sonido:

Una tarjeta de sonido o placa de sonido es una tarjeta de expansión para computadoras que permite la entrada y salida de audio bajo el control de un programa informático llamado controlador (en inglés driver). El típico uso de las tarjetas de sonido consiste en proveer mediante un programa que actúa de mezclador, que las aplicaciones multimedia del componente de audio suenen y puedan ser gestionadas. Estas aplicaciones multimedia engloban composición y edición de video o audio, presentaciones multimedia y entretenimiento (videojuegos). Algunos equipos tienen la tarjeta ya integrada, mientras que otros requieren tarjetas de expansión. En el 2008 el hecho de que un equipo no incorpore tarjeta de sonido, puede observarse en computadores que por circunstancias profesionales no requieren de dicho servicio.

Modem:

Un módem es un dispositivo que sirve para modular y demodular (en amplitud, frecuencia, fase u otro sistema) una señal llamada portadora mediante otra señal de entrada llamada moduladora. Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTC (Red Telefónica Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.

USB:









USB significa “Universal Serial Bus”. Tenemos que hacer primero una pequeña definición del hardware. Por un lado tenemos los puertos USB que irán incorporados en una tarjeta USB la cual puede ir insertada en un slot PCI. Dichos puertos son pequeñas ranuras de forma rectangular que llevan 4 hilos los cuales transportan datos. La conexión se realiza con un cable USB (usb cable) preparado para esta función.

Estos puertos transfieren datos y alimentación para una amplia variedad de periféricos en el PC.

Los periféricos son accesorios conectados a tu ordenador, como pueden ser cámaras digitales, discos duros externos, teclados o ratones.

¿Que aspecto tiene un puerto USB?

Aquí tienes una foto de una tarjeta USB que muestra 4 puertos donde van conectados los dispositivos. La parte roja quedará en el interior de la caja, insertada en la ranura PCI, y la parte blanca será lo que veamos por la parte trasera de nuestro PC.

Los puertos USB tienen tasas de velocidad las cuales viene definidas por dos versiones USB; la 1.1 de hasta 12 megabits por segundo (Mbs) y la 2.0 de hasta 480 megabits por segundo.

Los periféricos que usan estos puertos son de conexión/desconexión en caliente, lo cual significa que no hace falta apagar el ordenador para ponerlos o quitarlos. Dependiendo la clase de periférico y sus especificaciones, debemos tener cuidado con la electricidad estática al hacer esto. Siempre sigue las recomendaciones del fabricante al retirar hardware conectado a un puerto USB.

Las tarjetas y puertos USB son de gran ayuda a la hora de incorporar nuevo equipamiento a nuestro ordenador ya que eliminan la estricta necesidad de usar puertos paralelos. Aquí hay algunos ejemplos:

* Los ordenadores suelen venir con un solo puerto paralelo para impresoras, por lo que conectar dos ya supone un problema.

* Los módems usan puertos serie, como las impresoras, cámaras digitales y muchos otros componentes externos.

* Muchos ordenadores viene con dos puertos serie pero son un poco lentos.

* Algunos tipos de hardware necesitaban su propia tarjeta integrada con el consiguiente gasto de slots en la placa base.

Los puertos USB están acabando con estas limitaciones. Provee de un simple y estandarizado modo de conectar mas de 100 dispositivos diferentes a un PC. Esta es una gran ventaja comparado con otros puertos existentes.

Como hemos dicho, al ser un estándar para el PC, casi cualquier periférico que compres está soportado. Incluso algunos fabricantes están poniendo este tipo de puertos en teclados y en la parte frontal de la carcasa para mayor facilidad de conexión.

Si solo te queda un puerto, puedes comprar un adaptador USB (splitter) o un hub para obtener mas puertos y así de sucesivamente. En la fotografía de la derecha mostramos uno de estos elementos. Pincha en la foto para verla ampliada



MANTENIMIENTO PREVENTIVO DE UNA FUENTE DE ALIMENTACION

Mantenimiento preventivo de una fuente de alimentación



Este es un video sobre dicho tema:

http://www.youtube.com/watch?v=innMGHK1a2o

EL MANTENIMIENTO PREVENTIVO

Gran parte de los problemas que se presentan en los sistemas de cómputo se pueden evitar o prevenir si se realiza un mantenimiento periódico de cada uno de sus componentes. Se explicará como realizar paso a paso el mantenimiento preventivo a cada uno de los componentes delsistema de cómputo incluyendo periféricos comunes. Se explicarán también las prevenciones y cuidados que se deben tener con cada tipo. En las computadoras nos referiremos a las genéricas (clones).

HERRAMIENTAS PARA EL MANTENIMIENTO

Recuerde que para cualquier labor de mantenimiento se debe utilizar la herramienta adecuada. En cuanto al mantenimiento preventivo, podemos mencionar las siguientes:

Un juego de atornilladores (Estrella. hexagonal o Torx, de pala y de copa) Una pulsera antiestática Una brocha pequeña suave Copitos de algodón Un soplador o "blower Trozos de tela secos Un disquete de limpieza Alcohol isopropílico Limpia contactos en aerosol Silicona lubricante o grasa blanca Un borrador.

Elementos para limpieza externa (Se utilizan para quitar las manchas del gabinete y las demás superficies de los diferentes aparatos)

Juego de herramientas para mantenimiento preventivo

Existen varios procesos que se deben realizar antes cíe iniciar un mantenimiento preventivo para determinar el correcto funcionamiento de los componentes. Estos son:

· Probar la unidad de disco flexible. Una forma práctica de realizar este proceso es tener un disco antivirus lo más actualizado posible y ejecutar elprograma. Esto determina el buen funcionamiento de la unidad y a la vez. Se verifica que no haya virus en el sistema.

· Chequear el disco duro con el comando CHKDSK del DOS.

· Si se tiene multimedia instalada, puede probarse con un CD de música, esto determina que los altavoces y la unidad estén bien.

· Realice una prueba a todos los periféricos instalados. Es mejor demorarse un poco para determinar el funcionamiento correcto de la computadora y sus periféricos antes de empezar a desarmar el equipo.

http://www.monografias.com/images04/trans.gif

· Debemos ser precavidos con el manejo de los tornillos del sistema en el momento de desarmarlo. Los tornillos no están diseñados para todos los puntos. Es muy importante diferenciar bien los que son cortos de los medianos y de los largos. Por ejemplo, si se utiliza un tornillo largo para montar el disco duro, se corre el riesgo de dañar la tarjeta interna del mismo. Escoja la mejor metodología según sea su habilidad en este campo:

Algunos almacenan lodos los tomillos en un solo lugar, otros los clasifican y otros los ordenan según se va desarmando para luego formarlos en orden contrario en el momento de armar el equipo.

· El objetivo primordial de un mantenimiento no es desarmar y armar, sino de limpiar, lubricar y calibrar los dispositivos. Elementos como el polvo son demasiado nocivos para cualquier componente electrónico, en especial si se trata de elementos con movimiento tales como los motores de la unidad de disco, el ventilador, etc.

· Todas estas precauciones son importantes para garantizar que el sistema de cómputo al que se le realizará.

MANTENIMIENTO DE LA UNIDAD CENTRAL. MANTENIMIENTO DE LAS TARJETAS PRINCIPAL Y DE INTERFACE

Al destapar la unidad central debemos tener desconectados lodos los dispositivos tanto los de potencia como los de comunicación, No olvide organizar los tomillos a medida que se van retirando.

No haga fuerzas excesivas para retirar la tapa de la unidad central. Haga un análisis de la forma en que ésta se encuentra ajustada de tal modo que no se corran riesgos de daño en algún elemento.

El mantenimiento esté funcionando correctamente y adicionalmente, detectar alguna falla que deba corregirse. Con estos procedimientos previos se delimita el grado de responsabilidad antes de realizar el mantenimiento en caso de que algo no funcione correctamente.

El siguiente paso es retirar las tarjetas de interface (video, sonido, fax-módem, etc.), figura 1. Es muy recomendable establecer claramente la ranura (slot) en la que se encuentra instalada cada una para conservar el mismo orden al momento de insertarlas.

El manejo de las tarjetas electrónicas exige mucho cuidado. Uno de los más importantes es utilizar correctamente una pulsera antiestática con el fin de prevenir las descargas electrostáticas del cuerpo.

Luego se retiran los cables de datos Ribbon) que van desde la tarjeta principal hasta las unidades de disco duro. De disco flexible, de tape backup y deCD-ROM (si los hay) con el objetivo de liberar el espacio para la limpieza de la unidad central. Fíjese muy bien en la conexión de cada cable con el fin de instalarlos en la misma posición. Una buena precaución puede ser elaborar un plano simplificado indicando cada una de las conexiones. Esto sobre todo en equipos con los cuales no esté muy familiarizado.

Recuerde que estos cables tienen marcado el borde que corresponde al terminar número 1 de sus respectivos conectares.

Adicionalmente, se deben retirar los cables de alimentación de la fuente de poder

Se procede luego a retirar las unidades de disco flexible, de disco duro. El tape backup y de CD-ROM fijándolo en su ubicación y en el tipo de lomillos que militan, generalmente tus tornillos cortos corresponden a la unidad de disco duro.

Si después de revisar la unidad central es necesario retirar la tarjeta principal para limpiaría bien o para hacerle mantenimiento a otros elementos, libérela de los tomillos que la sujetan al gabinete. Se debe Tener Mucha cuidado con las arandelas aislantes que tienen los tomillos ya que éstas se pierden muy fácil. Observe con detenimiento el sentido que tienen los conectares de alimentación de la tarjeta principal ya que si estos se invierten, se pueden dañar sus componentes electrónicos.

Con elementos sencillos como una brocha, se puede hacer la limpieza general de las tarjetas principal y de interface, al igual que en el interior de la unidad.

Para limpiar los contactos de las tarjetas de interface se utiliza un borrador blando para lápiz. Después de retirar el polvo de las tarjetas y limpiar los terminales de cobre de dichas tarjetas, podemos aplicar limpia-contados (dispositivo en aerosol para mejorar la limpieza y que tiene gran capacidad dieléctrica) a todas las ranuras de expansión y en especial a los conectares de alimentación de la tarjeta principal.

Si usted es una persona dedicada al mantenimiento de computadoras, el soplador o blower es una herramienta indispensable para hacer limpieza en aquellos sitios del sistema de difícil acceso. Utilícelo con las computadoras apagadas ya que éste posee un motor que podría introducir ruido sobre la línea eléctrica y generar daños a las máquinas.

LIMPIEZA DE LA FUENTE DE PODER

Antes de proceder con el mantenimiento de la fuente de poder, se deben desconectar todos los cables de alimentación que se estén utilizando, Lo primero que se debe desconectar son los cables que van a la tarjeta principal recuerde los cuidados en su conexión).

Luego se desconectan todos los periféricos. Los conectares utilizados pura el disco duro, la unidad de respaldo en cinta (tape backup), si la hay, la unidad de CD-ROM y la unidad de disco flexible, no tienen un orden especifico en su conexión, cualquiera de los cables puede ir a cualquiera de estas unidades.

Una de las partes en donde se acumula más polvo es el ventilador de la fuente de poder. Para eliminarlo, se puede utilizar el soplador o blower sin tener que destapar la unidad. Utilice un destornillador, Para evitar que el ventilador gire creando voltajes dañinos.

¡Recuerde que la unidad central debe citar desenergizada o para mayor seguridad, sin los cables de alimentación!

Si no se dispone del soplador, se debe destapar la fuente para limpiarla. Es muy importante no perder ningún tornillo y tener claridad sobre el tiempo de garantía de la fuente, ya que después de decaparla se pierde por la rotura del sello de garantía. Para destapar la unidad se puede apoyar sobre la misma carcasa con el fin de no desconectar el interruptor de potencia de la fuente.

La limpieza inferior se puede hacer con una brocha suave. Después de limpiar la fuente de poder, si hubo necesidad de destaparla, procedemos a taparla y ubicarla en su sitio. Utilice los tomillos que corresponden con el fin de evitar daños en la corcusa.